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Abstract. The perturbed Korteweg.de Vries equation u,+A,uu,+A,u,,,+A,u,,.,+ 
~ , ( u u , ) , + A , u , ~  =0, which describes the evolution of long shallow Waves in a convecting 
fluid when the critical Rayleigh number slightly exceeds its critical value, admits two types 
of eract solitary wave solution. 

The following perturbed Korteweg-de Vries equation 

U, +A,urX + A 2 ~ x x x + A ~ u x x x y  + A ~ ( U U ~ ) ~  +Asuxx = O  ( 1 )  

can be used to describe the nonlinear behaviour of a convecting fluid near the transition 
point [I] ,  where the parameters A i  
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where U is the Prandtl number, G the Galileo number, and E a small parameter such 
that the excess of the Rayleigh number above its critical value is given by E ~ R , .  

It is interesting that various important equations such as Kdv, Burgers, Kdv-Burgers, 
Kuramoto-Sivashinsky [2-51 equations are just special cases of (1). Aspe and Depassier 
[l]  have studied the asymptotic solitary wave solution of (1). In this letter we give 
some exact solitary wave solutions in a simple way. The result shows that the exact 
solutions ‘are completely different from the perturbative solutions. 

For the travelling wave solutions u(x ,  f )  = U([) = u ( k x + o f ) ,  equation (1) becomes 

ou +fkA, U’+ h2k’u, + k2A,uS + A,k4uCZt +fA4k2(u2)r + C = 0 (3) 

after integrating once with respect to 5, where C is the integral constant. 
Noticing that 

2 2“ 

j = 0  j = 0  
( 2 A, tanh’c) = C, tanh’g 
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where A, ( j  = 0,1,. . . , n), E, ( j  = 0,1,. . . , n + 1) and C, ( j  = 0, 1, . . . ,2n)  areconstants, 
we make the crucial ansatz for A4 # 0: 

U(.$)= 1 A,tanh’.$. 
j = O  

By substituting (5) into (2) and equating the coefficients of tanh’c ( j  = 0.1,. . . ,5),  
we obtain a set of equations 

A,A2+12h3k2=0 (7) 

fkA,A:+6A2k’A2-6A,A,k4-3A,A2k2A4=0 (8) 

kA,ALA2+ 2A,A2k3- 2A2k2A5 + 40A2h3k4+ A4k2(2A: - A: - 2A0A2) = 0 (9) 

oA2+fk,A,(A:+2A0A2) - 8A2A2k3 - A, k2A5 + 8A,A3k4 

+(3AIA2-AoAl)A4k2 = 0 (10) 

(11) 

(12) 

oA,  + kA1AtAo-2A1A2k3+2A,A,k2- 16A2A3k4+ A,k2(2AoA2+ A:) = 0 

-oAo -fkA,Ai -2A2A2k3 - A,k2A5 + 2A,A3k4 - A4k2AoA, = 0. C 

There exist two cases to solve equations (7)-(12): 

(i) A , A 3 # A 2 A 4 .  In this case, the solutions of (7)-(12) are 

and the integral constant C is given by (12). It is easy to prove that the solitary wave 
solution (6) with (14)-(18) has a monotonic kink-shaped form. The amplitude 2A, ,  
the wave number k and the velocity w l  k of this kink-like solution are completely fixed 
by the model parameters. It is clear that the solitary wave (6) is E dependent in the 
following way: 

(19) 

after returning to the original model parameters for a convecting fluid given in (2). 
Equation (19) tells us that the solitary wave solution obtained here is non-perturbative. 

-1 Ao-&-2 A,-&-2 A,-&-2 k -c - ’  W - E  
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(ii) A , A l =  A2A4. In this case, the solutions of (7)-(11) are 

A,=O ( 2 2 )  

w =- 
AI 

where C is still given by (12) but with A,,, A,,, A, and w being given by (21)-(24), 
and k remains as an arbitrary constant. It is worthwhile to mention that in this case 
the dispersion relation (24) is only a linear one! 

Actually, in this case, for the travelling wave solution (1) with the linear dispersion 
relation (24) can be rewritten as 

The general solution of (20) with boundary condition u(+m) < 00 can be expressed by 

where k, C, D and to are arbitrary constants. The solitary wave solution (6) with 
(21)-(24) is just a special case of (26). Though this type of the travelling wave solution 
possesses some arbitrary constants, the velocity of the solution is constant because of 
(24). In this case, the travelling wave solution (26) or (6) with (21)-(24) is E independent 
and so it is also non-perturbative, 

All the possible travelling wave solutions for the A4 = 0 case can be obtained by 
modifying the crucial ansatz (6) as 

3 

u ( c ) =  1 A, tanh't 
,=0 

but we do not discuss them further here because various authors have obtained solitary 
wave solutions of this form by other approaches. For instance, Kudryashov [6] has 
obtained this type of solutions for h 4 = 0  by the Weiss-Tabor-Carnevale method [7]. 

In summary, the perturbed Kdv equation (1) which can be used to describe the 
evolution of long shallow waves when the Rayleigh number slightly exceeds its critical 
value allows two types of solitary wave solutions. The first type of solution is the 
kink-shaped solitary wave solution, and this type of solution is valid only for A,h,# 
A2h4. When A , A l  = A 2 A 4 ,  the model admits another type of solitary wave solution which 
possesses an E-independent bell-shaped form. The dispersion relation in this type of 
travelling wave solution is only a linear one. These two types of solutions are all 
non-perturbative and the velocities of them are all fixed by the model parameters A r  
( i  = 1,. . . , 5 ) .  
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